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Abstract

Monte Carlo computational methods have been introduced into data assimilation for non-

linear systems in order to alleviate the computational burden of propagating the system’s

full posterior probability distribution. By propagating an ensemble of representative states,

algorithms like the Ensemble Kalman Filter (EnKF) and Resampled Particle Filter (RPF)

rely on the existing modeling infrastructure to approximate the distribution based on the

evolution of this ensemble.

This work presents an ensemble-based smoother that is applicable to Monte Carlo filter-

ing schemes like the EnKF and RPF. At the minor cost of retrospectively updating a set of

weights for ensemble members, this smoother provides superior state tracking for two simple

nonlinear problems, the double-well potential and the trivariate Lorenz system. The algo-

rithm does not require retrospective adaptation of the ensemble members themselves, and

it is thus suited to a streaming operational mode. The accuracy of the proposed backward-

update scheme in estimating non-Gaussian distributions is evaluated by comparison to the

more accurate estimates provided by a Markov chain Monte Carlo algorithm.



1. Introduction

Monte Carlo computational methods have been receiving a growing interest for applica-

tion to sequential data assimilation (e.g., Evensen 1994; Houtekamer and Mitchell 1998;

Keppenne and Rienecker 2002; Ott et al. 2004) because they are computationally more

tractable than the conventional Kalman filter (Ghil 1997). Moreover, Monte Carlo algo-

rithms can be implemented without the labor-intensive development, tuning, and validation

of the tangent linear model and its adjoint (Errico 1997), which are major parts of the varia-

tional schemes. Furthermore, background fields can be chosen from a richer class that better

represents real systems, including anisotropic covariances and non-Gaussian noise probabil-

ity distributions. In contrast, standard optimal interpolation methods assume an isotropic

covariance (Daley 1991), while the extended Kalman filter (eKF) assumes implicitly that

the underlying probability distribution is Gaussian (Jazwinski 1970). Finally, Monte Carlo

methods can be designed to deal correctly with nonlinear system dynamics that produce

non-Gaussian posterior distributions.

Monte Carlo data assimilation schemes have been used mostly to obtain a filtered analysis,

in which only data prior to the time of analysis are used. Examples are (i) the Ensemble

Kalman filter (EnKF; Evensen 1994), which is a Monte Carlo approximation of the eKF;

(ii) a non-Gaussian extension of the EnKF that uses a “Gaussian mixture” (weighted sum

of Gaussian functions) instead of a single Gaussian probability density function to represent

the background distribution (Anderson and Anderson 1999; Bengtsson et al. 2003; Kim et

al. 2003); and (iii) the particle filter (Pham 2001; van Leeuwen 2003; Kim et al. 2003) that,

unlike the previous two, is non-parametric. We will inclusively refer to these Monte Carlo

filtering schemes as ensemble filters for simplicity.

In contrast to filtering, a smoothed analysis results from retrospective processing of the

observed data, where all data available, both past and future, are incorporated into the

analysis. Use of the future data increases the effective amount of data available for each

analysis and can significantly reduce analysis errors (Cohn et al. 1994). Filtered analyses

are most relevant for the initialization of numerical weather forecasts, where future data

are not available operationally. Smoothed analyses including reanalysis products, on the

other hand, have been providing some of the best available records for the evolution of

the atmosphere and oceans (Bennett 1992; Wunsch 1996; Kalnay 2003) and allowing the

scientific community to validate climate models and to conduct a variety of process studies.

In this paper, we examine a Monte Carlo approach to smoothing; we note in passing that

deterministic approaches exist (Eyink and Restrepo 2000). The method presented here allows

one to convert the output of any of the ensemble filters mentioned above into a sequence of

smoothed analyses, at a modest additional computational cost.

It is well known that an efficient forward–backward algorithm suffices to compute the

1



best linear state-space estimate (Jazwinski 1970; Gelb 1974). First, the optimal filtered state

estimates are computed forward in time with the Kalman filter, and then these estimates are

updated backward in time to find smoothed estimates. In this paper, we study a smoothing

algorithm with a similar forward–backward structure, in which the forward phase can be

any of the ensemble filters mentioned above. The backward phase of the algorithm uses the

ensemble of the filtered trajectories as its input and sequentially associates a time-dependent

probabilistic weight with each ensemble member. The probabilities are assigned based on the

relative likelihood of local step-to-step variations, while the likelihood of each state transition

is determined by the dynamic model and the state and observation noise distributions. The

smoothing algorithm we present leaves the filtered ensemble members untouched — it only

adjusts the weight of each ensemble member.

Monte Carlo smoothing schemes for data assimilation have been proposed in the past.

For example, the smoother presented by van Leeuwen and Evensen (1996) is a weighted

average of sample state trajectories, where the weights are determined by closeness of the

corresponding trajectories to the data over the entire analysis interval. Since the weights are

fixed for the entire interval, there is seldom enough model-permitted pliability in the resulting

state trajectories to allow likely encounters with all of the data, especially when the interval

is long and when the forecast equations contain significant errors and uncertainty. Evensen

and van Leeuwen (2000) later improved this approach essentially by dividing the interval and

performing data updates to the ensemble of trajectories sequentially, from one subinterval

to the next. Each trajectory is updated using a large space-time covariance function that

covers the subinterval from its beginning to the most recent data-update epoch.

In contrast, the smoothing algorithm presented here and initially explored by Kitagawa

(1996), Hürzeler and Künsch (1998), and Doucet et al. (2000) relies on a formula that is

sequential backward in time and is consistent with sampling of the ideal posterior distribu-

tion. While there are variants in execution of this algorithm (e.g., Godsill et al. 2004), the

basic smoothing formula is widely applicable to the result from any of the ensemble filters

mentioned previously. Qualitatively, the smoother examines each possible one-step state

transition in the filtered ensemble and determines the likelihood of a transition taking place,

given a stochastic dynamic model. The weight, or probability mass, assigned to each filtered

state value is then adjusted sequentially according to this likelihood. In this paper, we

demonstrate efficacy of the smoother in tracking shifts between dynamic regimes within two

systems studied extensively in data assimilation. We also check the posterior means, vari-

ances, and marginal distributions computed by the smoother against ground truth supplied

by an independently implemented Markov chain Monte Carlo (MCMC) method. By using

convergence diagnostics that are easy to verify for the two example problems considered here,

we ensure that the MCMC method provides accurate sampling of the posterior distributions.
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We will show that such ground truth is represented more accurately by smoothed ensembles

than by the corresponding filtered ensembles. The updates made by the smoother to filtered

ensembles can thus lead to dramatic improvements in the ensemble-mean estimate of the

state trajectory.

The paper is organized as follows. Section 2 summarizes the variety of approaches to

Monte Carlo solutions to the filtering problem. Section 3 presents the backward-time phase

of the smoother applicable to these filtered estimates. Section 4 outlines the MCMC method

used to obtain the posterior reference distribution. The estimation algorithms are compared

numerically using the two test problems described in section 5. The results of this comparison

are described in section 6, followed by concluding remarks in section 7. Numerical details of

the algorithms we use are given in three appendices.

2. Ensemble filters for nonlinear systems

We outline in this section the statistical approach to sequential data analysis and define some

notations. Let the vector xt be the state of the model at time index t = 1, 2, . . . , T , and

yt be the corresponding instantaneous observation, if it is available. These variables evolve

according to the fundamental rules

xt = ft(xt−1) + wt (1)

yt = ht(xt) + vt (2)

given an initial state x0. In (1), ft is the tendency function of the model and wt is a zero-

mean perturbation vector with a given probability distribution. This vector includes model

inaccuracies, as well as stochastic effects on the system. In (2), ht is the observation operator,

and vt is a zero-mean vector allowing for both sensor and sampling noise.

The observer accumulates data Yt ≡ {yt′ : 1 ≤ t′ ≤ t} up to time t. The filtering and

smoothing problems are solved by finding the posterior probability density function (PDF)

conditioned on a particular observation record, p(xt|Yt′). The filtered analysis estimates

the conditional PDF p(xt|Yt), while the smoothed analysis estimates p(xt|YT ). The desired

summary analysis can then be obtained as a moment (e.g., the mean) or the mode (e.g.,

maximum posterior likelihood) of the corresponding posterior PDF. In this section we con-

sider state representations and sequential Monte Carlo updates in the filtering problem, and

leave smoothing for the next section.

2.1. Dynamic update in ensemble filters

Ensemble filter schemes represent the conditional PDF p(xt|Yt) by a collection of N samples,

x
(n)
t , 1 ≤ n ≤ N . Each sample is updated sequentially in time. The essence of ensemble
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filter schemes is their use of repeated, randomly perturbed forecasts to sample the evolution

of the state equation under statistical uncertainty:

x
(n)
t = ft(x

(n)
t−1) + w

(n)
t for n = 1, . . . , N, (3)

where w
(n)
t are independent samples of the perturbation vector wt, and each sample tra-

jectory starts with a suitably selected x
(n)
0 . As mentioned previously, a major practical

advantage of ensemble schemes is that the existing model code can be used to compute the

tendency ft. When wt ≡ 0, eq.(3) reduces to a deterministic model prediction step.

2.2. Data update in ensemble filters

Various tradeoffs of computational cost versus modeling generality may be preferred depend-

ing on the degree of nonlinearity in (3). While all ensemble filters considered here use (3) to

dynamically update the ensemble members, each filter uses a distinct technique to update

the ensemble with the data, due to differing representations of p(xt|Yt). These representa-

tion techniques are briefly summarized below. The actual numerical algorithms used in our

experiments are detailed in appendix A.

2.2.1. Gaussian parameterization The EnKF (appendix A.1) assumes a Gaus-

sian posterior and thus needs only the first two moments, the mean and covariance of the sam-

ples from (3), to approximate p(xt|Yt). The Gaussian assumption is consistent with the un-

derlying premise of the eKF algorithm that has motivated the EnKF development (Evensen

1994). Unlike the eKF, however, the EnKF does not rely on linearized dynamics to forecast

the covariances.

2.2.2. Gaussian mixture parameterization Nonlinear dynamics ft does not pre-

serve a Gaussian initial PDF, thus making the Gaussian representation insufficient in prin-

ciple. In consequence, as we will see, methods like the EnKF that use a Gaussian PDF

representation may experience a saturation of performance despite unbounded increases in

the ensemble size. A practical non-Gaussian parameterization of the conditional PDF is a

sum of Gaussian basis functions, called a Gaussian mixture distribution (McLachlan and

Peel 2000). Anderson and Anderson (1999), Bengtsson et al. (2003), and Kim et al. (2003)

have experimented with Gaussian mixture parameterizations and have verified that filter

performance can exceed that of a single Gaussian. The data-update formulas in this case are

considerably more complex than the standard minimum-variance (Gauss-Markov) estimator

used under Gaussian assumptions.
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2.2.3. Nonparametric approximation Instead of assuming a functional form,

nonparametric approaches to data updating represent the PDF using a collection of samples

drawn from it. Each sample consists of a state value x
(n)
t and associated probability mass

p
(n)
t , effectively approximating the desired conditional PDF by the probability mass function

p(xt |Yt) ≈
N∑

n=1

p
(n)
t δ(xt − x

(n)
t ) (4)

where δ is the Dirac delta function. Under this density, for example, the posterior mean is

estimated by
∑N

n=1 p
(n)
t x

(n)
t . The probability mass p

(n)
t is computed from the posterior PDF

via Bayes’ formula and depends therefore on the data set Yt. This approach is known as the

particle filter (appendix A.3) in the statistical literature (e.g., Kitagawa 1996) and has been

experimented with in the context of data assimilation (Pham 2001; van Leeuwen 2003; Kim

et al. 2003). Ensemble members inconsistent with the data receive low weight, eventually

reducing the effective ensemble size. Periodic resampling of the ensemble is thus necessary

to keep a diverse set of ensemble members (appendix A.4). The resulting method is referred

to as the resampled particle filter (RPF).

3. Backward smoothing of particle weights

The smoothed analysis is based upon the posterior PDF p(xt|YT ) for T ≥ t, that is, the ob-

servation sets are analyzed retrospectively. In particular, a fixed-interval smoother computes

p(xt|YT ) for a fixed observation interval T , while the fixed-lag smoother finds p(xt|Yt+t′) for

a fixed t′ > 0 (Cohn et al. 1994). Because the algorithm we present is sequential in backward

time, it applies equally well to both formulations, and we shall focus on the fixed-interval

case hereafter.

Let pt|t(xt) ≡ p(xt |Yt) and pt|T (xt) ≡ p(xt |YT ) denote the filtered and smoothed

conditional probability densities, respectively. It is well known that the smoothed density

function pt|T can be evaluated by updating the filtered density pt|t using a backward sequential

computation, under the assumption that the dynamical and observation equations are linear

and the stochastic inputs to the model have Gaussian distributions (e.g., Jazwinski 1970).

For the general case without the linear and Gaussian assumptions, the smoothed and filtered

densities can be proportionally related (appendix B) as

pt|T (xt) ∝ pt|t(xt) p(yt+1, . . . ,yT |xt), (5)

where the last factor is the probability that the present state xt would give rise to the (known)

future observation sequence. This probability can be expressed in terms of the the future

smoothed density pt+1|T by applications of the chain rule and Bayes rule. In particular, the
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following recursion formula can be derived (see appendix B):

pt|T (xt) =

∫
pt+1|T (xt+1)

p(xt+1 |xt) pt|t(xt)∫
p(xt+1 |xt) pt|t(xt) dxt

dxt+1 . (6)

This formula can be discretized, using (4), as

p
(n)
t|T =

N∑
m=1

p
(m)
t+1|T

p(x
(m)
t+1 |x

(n)
t ) p

(n)
t|t∑N

`=1 p(x
(m)
t+1 |x

(`)
t ) p

(`)
t|t

, (7)

and allows the evaluation of pt|T given pt+1|T , and hence a backward sequential computation

of the smoothed densities. The resulting computational scheme is referred to as the backward

sequential smoother (BSS).

The BSS algorithm updates the weights in the weighted ensemble of filtered trajectories{
(x

(n)
t , p

(n)
t|t ) : 1 ≤ n ≤ N

}
; it thus refines ensemble filtering algorithms like the EnKF and

RPF, in which the ensemble members are equally weighted: p
(n)
t|t = 1/N . By definition,

the filtered and smoothed ensembles are identical at t = T . The smoothed weights p
(n)
t|T are

then computed backward in time, by applying (7) for t = T−1, T−2, . . . , 1. Application of

the BSS scheme is straightforward when the state-transition probabilities p(x
(m)
t+1 |x

(n)
t ) for

1 ≤ m, n ≤ N can be readily evaluated. For the additive dynamic perturbation of (3), the

transition from x
(n)
t to x

(m)
t+1 implies x

(m)
t+1 = ft(x

(n)
t ) + wt+1, so the probability is obtained by

evaluating the density of wt+1 at x
(m)
t+1 − ft(x

(n)
t ). The BSS algorithm thus uses the state-

transition rule to impose dynamical constraints on the filtered weights p
(n)
t|t ; in particular, it

reduces the weights of those trajectories that contain jumps at the epochs of data updates,

which are inconsistent with the model dynamics.

The BSS algorithm requires three new tasks: retention of the filtered ensemble trajecto-

ries, evaluation of the state transition probabilities, and actual computation of the smoothed

probability weights. Regarding the first, which is a storage requirement, we note that the

filtered trajectories x
(n)
t themselves are unaltered by the backward smoothing pass. In fact,

these ensemble members are examined serially, in a streaming mode, once forward in time

and once backward. The ensemble trajectories do not ever have to be simultaneously present

in primary memory. The storage requirement of the algorithm (in terms of its computational

cache) is hence O(ND), where D is the dimension of the model state vector.

The second requirement, computing the N × N state transition matrix p(x
(m)
t+1 |x

(n)
t ),

requires N2 density evaluations for the typical case of additive state noise. Computation of

the matrix is facilitated by storing the one-step-ahead forecasts ft(x
(n)
t ), which doubles the

storage requirement.

The third requirement, recursive evaluation of the smoothed weights, is fundamentally

computational. Specifically, eq.(7) amounts to two matrix-vector multiplications. The total
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computational cost of the algorithm is O(TN2), which is insignificant for typical ensemble

sizes N < 103. If its share became significant relative to model computations, sparsity in the

transition matrix could be exploited. The algorithm thus requires minimal computational

resources over those allocated to the ensemble filter.

4. Markov chain Monte Carlo (MCMC) estimation

The BSS procedure above estimates the posterior distribution p(xt |YT ). As an independent

reference to evaluate the ensemble smoothers, we also use an MCMC estimate of the posterior

PDF. Our MCMC computations do not directly assess accuracy of the filters, which estimate

p(xt |Yt), but they do assess the information loss due to the filter’s use of Yt rather than

YT .

MCMC is an old technique for sampling from complex probability distributions (Metropo-

lis et al. 1953) that has received much recent attention (Gilks et al. 1996; Robert and Casella

2005) as computational resources and enhancements to the underlying principles have put

it within reach of many applications. It is well-known that the simple, well-understood

Metropolis-Hastings algorithm used for MCMC in this paper does not scale to realistic data

assimilation problems. However, versions of MCMC have been used in large-scale spatial

inversion problems (Turmon et al. 2002; Haario et al. 2004), and there is potential to use

MCMC variants that exploit the sequential structure of the data assimilation problem in the

more challenging space-time setting (Alexander et al. 2005). As we shall see, even simple

variants of MCMC are quite effective for the small systems considered here, and we need no

special twists to generate accurate estimates of the posterior.

Ensemble filters and smoothers, as well as MCMC, all rely on random sampling, but the

latter works very differently from ensemble-based methods. MCMC fits a candidate state

sequence by taking many passes through the time series, so it is able to adapt the trajectory

with reference to all observed data, avoiding the loss-of-diversity problem experienced by

the particle filter. This property makes MCMC a good check of the BSS posterior estimate.

Furthermore, additional MCMC samples can be generated simply by running the sampler

longer. In this study, this has allowed us to generate very large MCMC sample sets to ensure

the posterior distribution is sampled thoroughly.

Other methods for obtaining the exact PDF evolution have been used in the literature.

The posterior distribution is defined by the Fokker-Planck equation and Bayes’ rule (Jazwin-

ski 1970). Computing it directly through these equations, however, requires multidimensional

integrals over the state variables xt. In one dimension, for example, these integral equations

have been solved directly using numerical techniques (Miller et al. 1999). The advantages

of MCMC relative to such a direct solution are in its ease of implementation in the multidi-
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mensional setting, well-characterized performance properties, and a theoretical guarantee of

convergence to the true posterior PDF.

To see how MCMC works, consider estimation of a statistical moment φ(z), such as the

mean or covariance, of the random vector sequence z = (x1, x2, · · ·xT ) which in our case is

the state sequence that represents the entire trajectory. The moment can be estimated via

a sample average from the distribution π(z) ≡ p(z |YT ).

E φ(z) =

∫
φ(z) π(z) dz ' 1

N

N∑
n=1

φ(z(n)) (8)

where E is the expectation operator and each sample trajectory z(n) is drawn from the

PDF π. Ideally, the N samples are drawn independently, but in many situations this is not

easy. In MCMC, simple procedures are followed to define a Markov chain that has π as

its stationary distribution. The chain is started at z(0), and after an initial spin-up period,

each sample from the chain is approximately a draw from π. Even though the samples are

not independent, their sample average (8) still converges to the the correct mean; that is,

the chain is constructed to be ergodic. It can be shown (Tierney 1996) that, as N → ∞,

the Markov chain converges to the correct posterior PDF, independently from the initial

trajectory estimate z(0). Diagnostics based on inter-sample correlation can help determine

when convergence has occurred.

In this paper, we construct the Markov chain according to the Metropolis-Hastings

method (see Hastings 1970, and appendix C here). We start with an essentially arbitrary

trajectory z(0), and perform thousands of updates of z to stabilize the posterior PDF. One

update to z requires sweeping over its T entries, in order to update each component xt ac-

cording to a randomized Metropolis-Hastings rule. After this spin-up period, further sweeps

through the full data set are performed to gather N samples of z and compute statistics

of the posterior density via (8). To compute the posterior mean, we set φ(z) = z. Other

statistics, such as variances and histograms, are computed just as easily from the same N

samples.

5. Evaluating algorithm performance

Many performance characteristics of filtering and smoothing algorithms can be illustrated in

their application to two simple nonlinear systems: the double-well potential and the trivariate

Lorenz (1963) model. Both exhibit phase transitions and have been used extensively as

reference problems in the nonlinear assimilation literature (Miller et al. 1994; Miller et al.

1999; Anderson and Anderson 1999; Evensen and van Leeuwen 2000; Pham 2001; Kim et al.

2003).
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The double-well system is one of the simplest nonlinear dynamical systems that can be

used to study tracking of phase transitions. The motivating idea is a particle in a potential

double-well F (x) = x4 − 2x2, with minima at x = ±1, subject to stochastic forcing so that

transitions between one well and the other take place from time to time. Formally, this

behavior is modeled by the continuous-time diffusion process dxt = g(x) dt + κ dBt , where

g(x) = −dF (x)/dx, Bt is the unit-variance Brownian motion process, and κ determines the

strength of the dynamic noise. Following Miller et al. (1994), we use κ = 0.5. The stationary

distribution of the diffusion process is proportional to exp(−2F (x)/κ2), placing equal mass

at the two minima.

The trivariate Lorenz model, abbreviated hereafter as L63, has also been extensively

studied for assimilation purposes and may be written as dx/dt = g(x), where

x ≡

x1

x2

x3

 , g(x) =

 10(x2 − x1)

28x1 − x2 − x1x3

x1x2 − (8/3)x3

 .

The system’s attractor is known to have a fractal dimension slightly higher than two, and

its phase-space geometry (the two “butterfly wings”) is composed of two dynamic regimes

in a qualitative sense.

For numerical experiments, the system equations (1) and (2) are constructed as follows:

We discretize both the double-well and L63 diffusion dynamics at a fixed time interval τ as

xt = xt−1 + τg(xt−1) + wt, where wt is Gaussian distributed with zero mean and covariance

matrix κ2τ I, where I is the identity matrix. For L63, we have κ = 0, but a non-zero κ may be

used to simulate imprecise physics. The observation equation is yt = xt +vt, where yt is the

noisy observation which may not be available at all times, and vt is Gaussian-distributed,

zero-mean, and with a covariance matrix of σ2I.
Our experiments are directed at understanding the benefits of adopting a non-Gaussian

PDF representation, as well as evaluating the reduction in estimation uncertainty obtained

by the BSS smoothing approach outlined in section 3. Two filtering algorithms, EnKF and

RPF, are compared against their respective smoothing counterparts. We use the MCMC

smoother, run to stationarity, as a check on the posterior distributions computed by these

algorithms. In particular, time series of the mean and standard deviation from filtered and

smoothed ensembles are compared to those from MCMC sample averages. Also, snapshots of

the state distribution, approximated by normalized histograms of ensemble values at a fixed

time, from a filter and smoother are compared to the corresponding distributions computed

by MCMC.

We have also compared snapshot distributions of filtered and smoothed ensembles using

the order-statistic histogram, often called a Talagrand diagram, to determine if the true state

and the ensemble members are statistically indistinguishable at a given time (Anderson
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and Anderson 1999; Lawson and Hansen 2004). A single order statistic is computed by

finding the rank of the true state value xt within the sorted ensemble of N state values

{x(n)
t : 1 ≤ n ≤ N} at the given time. Then, by repeating the filter or smoother analysis 103

times, we construct a histogram of these order statistics. A necessary condition for the true

posterior and ensemble distribution to be identical is that the order statistic be uniformly

distributed between 0 and N . We used the second component of the xt variable in the

L63 system for this test. Finally, the accuracies of the filtered and smoothed estimates are

evaluated using the standard root-mean-square (RMS) criterion, applied to the difference

between the ensemble mean and true trajectories.

6. Numerical results

6.1. Double-well results

We obtained a sample trajectory with noisy observations by simulating the double-well sys-

tem with κ = 0.5 and σ = 0.2, implemented with τ = 0.05. In the sample, the state variable

makes a descending transition, from the well centered at +1 to the other at −1, followed by

an ascending transition back into the original well. Each visit is observed sparsely by three

or four data points (Fig. 1a). Given these 11 observations, the trajectory is reconstructed Fig. 1

using the ensemble filter, BSS smoother, and MCMC smoother. Here, the RPF algorithm

(N = 104 particles) is used to obtain the filter results, to which BSS is applied to obtain the

smoother results. The MCMC posterior distribution is obtained by initializing (“spinning-

up”) the Metropolis-Hastings Markov chain for 105 sweeps and then storing 2000 sample

trajectories, skipping 2000 sweeps between adjacent stored samples. The large ensemble

size (N = 104) and MCMC sweep number (4.1×106) are used to compute well-sampled

histograms of the posterior distribution (see below), but are not necessary just to track the

state transitions accurately.

The filtered (RPF) and smoothed (RPF-BSS) ensemble means, or
∑N

n=1 p
(n)
t|t x

(n)
t and∑N

n=1 p
(n)
t|T x

(n)
t respectively, as well as the mean MCMC trajectory have successfully recon-

structed the state history (Fig. 1b). The RPF mean shifts abruptly at the first observation

after each transition, as expected from the sequential nature of the algorithm. The RPF-BSS

and MCMC means are qualitatively similar and are better approximations to the actual state

trajectory, due to availability of the retrospective observations. Note also that the RPF-BSS

and MCMC means use the entire time between observations to make the phase transition,

as dictated by the double-well dynamics. This choice spreads the necessary large values of

state noise, which is penalized quadratically by the Gaussian distribution of wt, out into a

larger number of smaller values for a lower cumulative cost in energy (or log-probability).

The estimated standard deviations of all three methods (Fig. 1c) show a similar level
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of background variability (slightly less than 0.2), representing the jitter in the system while

visiting a well. The variance found by the MCMC analysis increases markedly toward unity

during the two phase transitions. The increased uncertainty, extending across the entire span

between observations, is due to the weak constraint supplied by the dynamics in-between the

two potential wells. The RPF-BSS variance has the same features and agrees closely with

the very accurate MCMC estimate. On the other hand, the RPF variance completely misses

the significance of the phase transitions with respect to the variance of the state estimate. Fig. 2

For a strongly non-Gaussian posterior distribution, the first two moments do not tell the

whole story. We see from the MCMC posterior distribution near phase transition (Fig. 2)

that the probability mass is actually spread out widely with concentrations around the

stable points x = ±1. The posterior distribution is clearly non-Gaussian at these times. The

normalized histogram of the RPF ensemble at any given time is, however, clustered tightly

near the estimated mean, moving almost all the particles toward the latest observed value.

The BSS smoother, on the other hand, re-evaluates the weights of the filtered particles so

that the resulting distribution becomes more widely spread and shows clear signs of trying

to approximate a bimodal distribution. Recall that the BSS does not alter the ensemble

members: it simply assigns a new weight to each existing member at each time. So, the

BSS density approximation is smoothest near the current mode (x = +1 in Fig. 2a versus

x = −1 in Fig. 2b). Around the other mode, only a few ensemble members must carry

all the probability mass and the approximation is coarser. However, note that the relative

posterior probability carried by the two modes is roughly correct. Away from the phase-

transition times, the posterior distributions for the three methods agree closely, and are

nearly Gaussian, centered around the estimated means (not shown).

Because the RPF and BSS algorithms allow mass to be placed at or near the correct

locations in state space, we would expect their tracking of state changes to be superior to

a method based on Gaussian PDF reconstructions alone. The particle methods, however,

depend on statistically unlikely members to maintain the non-Gaussian features of their

PDFs, and these features become apparent only during phase transitions. Maintenance of

such minority members by chance is more difficult when the ensemble size is limited, as is

the case in current data assimilation practice. The tracking abilities of an ensemble filter and

smoother can both deteriorate significantly when the ensemble size is reduced to N = 100

(Figs. 3a,b). Fig. 3

Practical methods to remedy this computational limitation exist. One approach is to

view any realization of the system noise as a brute-force search for the optimal state tra-

jectory. Thus, when the ensemble size is limited, one can compensate by expanding the

search interval. A simple procedure is thus to inflate the system noise variance beyond its

known value, and this has indeed proven effective. Specifically, when the noise-amplitude
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parameter κ is increased by 40%, the mean trajectory, as well as the uncertainty estimate,

can become quite adequate (Figs. 3c,d), especially for the ensemble smoother. In practice,

this parameter of the algorithm, which determines the effective noise it uses, needs to be

optimized. As illustrated in Figure 4, a strong enough noise allows the ensemble trajectories Fig. 4

to capture the state transition. Excessive inflation of noise, however, degrades the analysis

accuracy, especially at steady-state, by introducing too many dynamically unlikely ensemble

members. The value of the dynamic noise variance thus serves as a regularization parameter

for the purpose of trajectory estimation.

6.2. Lorenz model results

Following the reasoning associated with κ and Figure 4, we have experimented with L63,

which has a well-documented sensitivity to the initial state, by simulating the system deter-

ministically (i.e., κ = 0) to obtain a sample state-trajectory and noisy observations to which

the ensemble filter and smoother are then applied by using a stochastic dynamics (κ2 = 0.1).

Randomly generated initial states are used for both the filter and smoother. The observa-

tions are provided only for two of the three state variables (x1 and x3) at an interval of 0.5

time unit, which is roughly the nominal Nyquist interval for the fastest periodic component,

and the observation noise parameter was σ2 = 2.

The RPF and EnKF algorithms are used for filtering, each with an ensemble size of

N = 40; BSS is then used to smooth each of these two filtered trajectory ensembles. Fig-

ures 5–7 show that even with such a small ensemble size the smoother can track the state

trajectory quite well. While the filters (two upper panels) also display some level of tracking Fig. 5

Fig. 6

Fig. 7

capabilities, it is remarkable that the smoothers (two lower panels) have accurately repro-

duced some of the singular features that are not apparent from the sparse observations. In

particular, the peaks at around times 27 and 39 occur between adjacent observations, and

are missed entirely or underestimated by the filters, but are reconstructed accurately by the

smoothers. This demonstrates that the BSS smoothing algorithm can efficiently determine

the weights of the states in the filtered ensemble to improve the estimated ensemble mean.

It is a striking illustration of how much information is latent in the nonlinear dynamics,

unused by the filter, but recoverable by a correctly designed smoother.

Comparison to MCMC confirms that the variance of the smoothed ensemble is smaller

than the filtered variance and is closer to the MCMC variance (Fig. 8, top panel). Also, Fig. 8

the posterior distribution of the x2 variable is examined at the times indicated by arrows

in Figure 6 for the RPF, RPF-BSS, and MCMC method (Fig. 8, bottom four panels),

where the distribution is estimated as a normalized histogram of samples in each ensemble.

These estimated distributions reveal that the smoothed ensemble in the L63 case is a close

approximation of the correct distribution obtained by the MCMC technique.
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The Talagrand diagrams of the x2 variable are also evaluated at the times indicated by

arrows in Figure 6 and plotted in Figure 9. As a necessary condition for the ensemble to Fig. 9

be unbiased, the order statistics must have a uniform distribution. Indeed, the smoothed

analysis yields flatter plots than the filtered analysis. The unevenness of the histogram

indicates that the ensemble either under- or over-estimates the truth as the distribution

shifts to the left or right, respectively, in the plots. These plots show that, although the

smoother inherits this problem from the filter, it does improve upon it. This observation

is consistent with the fact that the smoother uses the identical ensemble as the filter, only

with different weights assigned to each ensemble member. Fig. 10

Figure 10 shows the RMS errors of the posterior mean produced by the various L63

analyses, as a function of ensemble size N . The RPF, EnKF, RPF-BSS and EnKF-BSS

methods are compared. Clearly, the smoother always yields smaller RMS errors than the

corresponding filter, due to the availability of retrospective data. When the ensemble size

is small, the EnKF-based filter and smoother yield lower errors than the methods based on

RPF. The reason for this is that the EnKF actively re-populates its ensemble around the

best linear estimate at each update, while the RPF depends passively on random generation

for members that happen to agree with data. Hence the RPF-based methods require a larger

ensemble to randomly acquire members worthy of large weights. On the other hand, due to

the underlying Gaussian assumption, the performances of EnKF and EnKF-BSS saturate

after N = 50, showing virtually no improvements as N is increased further. By contrast, it is

known that RPF and BSS are asymptotically consistent, that is, as N →∞, the estimated

posterior mean approaches the true Bayesian posterior mean at a rate proportional to 1/
√

N

(Crisan 2001).

7. Concluding remarks

A backward sequential smoother (BSS) algorithm updates the weights assigned to each

state sample generated by an ensemble filter. Significant improvement in accuracy over the

ensemble-filter results has been demonstrated for both the Ensemble Kalman filter (EnKF)

and Resampled Particle Filter (RPF). The BSS results are also tested against results from

a Markov chain Monte Carlo (MCMC) algorithm.

In the case study using the Lorenz (1963, L63) model, we showed that the smoothing

algorithm accurately reconstructs several state-trajectory features that are not apparent

from the sparse observations and have been missed almost completely by the filtered mean

trajectory (Figs. 5-7). Also, in the double-well case, the smoothed ensemble variance is seen

to be consistently high during the state transitions where the uncertainty in the estimate is

high, while the filtered variance does not present such information (Fig. 1). The increased
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BSS variance at these times agrees quantitatively with the posterior variance as computed by

the MCMC algorithm. Finally, highly non-Gaussian features are apparent in the posterior

distributions at transition times, and the BSS tracks these successfully in both test cases

(Figs. 2 and 8).

Our results from both the Gaussian (EnKF) and non-Gaussian (RPF) filters (and corre-

sponding BSS smoothers) depend quite strongly on the ensemble size N (Fig. 10). In the L63

case, the performance of the Gaussian filter or smoother saturates quickly as N increases,

while the performance of their non-Gaussian counterparts improves steadily with N . Ev-

idently, the Gaussian approximation is ultimately inadequate for the nonlinear dynamics.

The non-Gaussian RPF algorithm, however, requires a large N to perform at its potential,

as demonstrated in the double-well case as well (Fig. 3); this is the practical consequence

of the slow, 1/
√

N convergence of the algorithm. It follows that, when the ensemble size N

is limited by computational resources, the Gaussian EnKF method and the associated BSS

smoother may still provide acceptable performance in practice, even for a nonlinear model

with non-Gaussian state distribution.

The RPF-BSS smoother reconstructs the true posterior PDF with an error proportional

to 1/
√

N . In practice, however, specific implementations may have different constants of

proportionality, and ingenious sampling schemes may even lead to better convergence as a

function of N . To this end, two important issues in ensemble filtering are: (i) sampling from

the unknown initial PDF, and (ii) maintaining sufficient spread of the numerically evolving

PDF to keep sampling the non-Gaussian features of the true PDF. The overall purpose

is to generate perturbations that are effective in guiding the perturbed trajectories in the

most likely directions of system evolution (Miller and Ehret 2002). Two approaches that are

widely used in numerical weather prediction to achieve this purpose are bred vectors (Toth

and Kalnay 1993; Kalnay 2003) and singular vectors (Molteni et al. 1996; Ehrendorfer and

Tribbia 1997).

To the extent that the RPF-BSS smoother does not modify the trajectories of the RPF

filter, the smoother simply inherits the quality of the sampling from the filter, although it

does improve upon the weights attached to each trajectory at any given time. The smoother

results in this paper highlight the fact that the perturbations used by the filter do not nec-

essarily aim to mimic the state noise process wt; they represent, instead, a numerical device

to improve the sampling efficiency of the finite set of particle trajectories in representing an

elusive and evolving state-space distribution. We have thus shown that, when N is fixed and

small, both the filter and smoother performances can be improved significantly by enhancing

the dynamic noise parameter value κ (Fig. 4).

This observation motivates a future investigation on strategies for optimal perturbations

and optimal sampling. The latter may involve variance reduction methods that are fairly well
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known in the statistical literature but have been only partially explored in meteorological

or oceanographic applications (Balgovind et al. 1983; Doucet et al. 2001). The loss of

diversity in the ensemble can be measured during filtering. It is then possible to intervene

and enhance the ensemble quality, for example, with MCMC-based tuning of members of

the ensemble (Godsill and Clapp 2001). We expect to pursue some of these ideas in future

work, in order to bring the smoothing algorithm presented here closer to implementation on

realistic models of geophysical fluids.
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APPENDIX

A. Ensemble-based data-update schemes

The dynamic update step is given by (3) and is common to all filters. The data-update step

is different in each filter scheme and is summarized here. In the observation equation (2),

let vt have a zero-mean Gaussian distribution with a given covariance matrix Rt.

A.1. The Ensemble Kalman filter (EnKF)

At each data update, the sample mean and covariances are computed according to

xt =
1

N − 1

N∑
n=1

x
(n)
t , (9)

Pt =
1

N − 1

N∑
n=1

[x
(n)
t − xt][x

(n)
t − xt]

T . (10)

In practice, when the ensemble size is small, some local approximation procedures may

have to be applied to (10) to suppress spurious long-distance correlations (Houtekamer and

Mitchell 1998; Ott et al. 2004). The mean vector and covariance matrix so obtained are
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then simply substituted into the standard data-update step of the eKF algorithm:

Kt = PtH
T
t

(
HtPtH

T
t + Rt

)−1

(11)

x̂t = xt + Kt [yt − ht(xt)] (12)

P̂t = Pt −KtHtPt (13)

where Ht ≡ ∂ht

∂x

∣∣
xt

is the Jacobian of the observation operator ht about the background

mean xt. The updated mean x̂t and covariance P̂t are the filtered analysis.

A zero-mean Gaussian distribution with the resulting covariance P̂t is sampled N times

to generate the perturbations ∆x̂
(n)
t for n = 1, . . . , N . The state samples are then updated

as

x
(n)
t = x̂t + ∆x̂

(n)
t (14)

to complete the data-update step of EnKF.

A.2. “Stochastic” EnKF

EnKF tends to underestimate the covariances of the analyzed state samples (14), when

compared against the formal covariances computed from the full eKF equations (Burgers et

al. 1998; Evensen 2003). A method to remedy this is to artificially corrupt the observed

data yt by samples v
(n)
t of the observation noise vector vt, and this “stochastic” technique is

found particularly effective for nonlinear dynamics (Lawson and Hansen 2004). Specifically,

the data-update steps (12)–(14) are replaced by

x
(n)
t = xt + Kt

[
yt − ht(xt) + v

(n)
t

]
, (15)

and the mean and covariance of the resulting state samples are computed as the filtered

analysis and its covariance. We have found this technique effective for the EnKF estimation

in the L63 case, when the ensemble size is small.

A.3. Particle filter

In the particle filter, each state sample x
(n)
t is associated with a probability mass (weight)

p
(n)
t , which is updated by persistence

p
(n)
t|t−1 = p

(n)
t−1 (16)

along with the dynamic update formula (3).

The data-update step in the particle filter is simply to sample the Bayes formula. Specif-

ically, the ensemble of sample–weight pairs
(

x
(n)
t , p

(n)
t|t−1

)
resulting from the prediction steps
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(3), (16) is a discrete representation of the conditional probability function p(xt|Yt−1). To

update the ensemble with the most recent data yt, we use the Bayes formula

p(xt|Yt) = p(yt|xt) p(xt|Yt−1) / p(yt) , (17)

where p(yt) is constant with respect to n and p(yt|xt) can be easily evaluated using the

distribution function for vt. Given (2) with Gaussian observation noise, we have

p(yt|xt) = p[yt − ht(x
(n)
t )]

∝ exp{−[yt − ht(x
(n)
t )]TR−1

t [yt − ht(x
(n)
t )]/2} .

Thus, (17) becomes

p
(n)
t = c · p(n)

t|t−1 · exp{−[yt − ht(x
(n)
t )]TR−1

t [yt − ht(x
(n)
t )]/2} , (18)

where c is a normalization constant chosen so that
∑N

n=1 p
(n)
t = 1. In effect, the N weights

are overlaid with the likelihood of the data.

A.4. Resampled particle filter (RPF)

The particle filter tends to become less efficient and eventually not effective in time due to

the “empty-space phenomenon”, where much of the probability mass concentrates in a very

small number of state samples, ignoring most of the state space (Anderson and Anderson

1999). An effective remedy is to resample the updated particles x
(n)
t , essentially pruning the

highly unlikely state values, while retaining more likely values. The resampling procedure

is: (i) update x
(n)
t via (3) and then p

(n)
t via (18); (ii) obtain N samples from the PDF (4),

allowing for duplicate sample values; (iii) assign the N samples as the new particles x
(n)
t ,

and let the corresponding probability masses be p
(n)
t = 1/N (a uniform distribution). The

resulting algorithm is referred to as the resampled particle filter. The multinomial sampling

of (ii) introduces extra variance in the Monte Carlo approximation process compared to

other schemes that more systematically choose how often to include each sample. We did

not observe performance losses due to this particular design choice, but differences have been

observed in other applications (Liu and Chen 1998).
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B. Derivation of the Backward Sequential Smoother

We denote the consecutive observation set {yt+1, . . . ,yT} as Yt+1:T . When u is either t or

t + 1, the chain rule and Bayes rule yield

p(xu|YT ) = p(xu|Yt,Yt+1:T )

= p(xu,Yt+1:T |Yt)/p(Yt+1:T |Yt)

= p(xu|Yt) p(Yt+1:T |xu,Yt)/p(Yt+1:T |Yt)

= p(xu|Yt) p(yt+1:T |xu)/p(Yt+1:T |Yt) , (19)

where the last equality holds because the past and future observations are conditionally

independent given the present state. For u = t,

pt|T = pt|t p(Yt+1:T |xt) / p(Yt+1:T |Yt) , (20)

from which (5) follows. Also, by setting u = t + 1 in (19), we have

pt+1|T / p(xt+1|Yt) = p(Yt+1:T |xt+1) / p(Yt+1:T |Yt) . (21)

The second term on the right-hand side of (20) can be written as

p(Yt+1:T |xt) =

∫
p(Yt+1:T ,xt+1|xt) dxt+1

=

∫
p(Yt+1:T |xt+1,xt) p(xt+1|xt) dxt+1

=

∫
p(Yt+1:T |xt+1) p(xt+1|xt) dxt+1 . (22)

By substituting (22) into (20), the terms involving the future observations Yt+1:T can then

be eliminated using (21) to yield

pt|T = pt|t

∫
p(xt+1|YT ) p(xt+1|xt)

p(xt+1|Yt)
dxt+1 , (23)

whose denominator can be expressed in terms of the filtered distribution as

p(xt+1|Yt) =

∫
p(xt+1|xt) pt|t dxt (24)

to yield the BSS formula (6).

C. MCMC via Metropolis-Hastings

Section 4 has introduced MCMC, which uses a cleverly-chosen Markov chain to generate

samples z = (x1, ...,xT ) from the posterior π(z) = p(z |YT ). The art of MCMC is in choosing
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the particular ergodic Markov chain, specified by its transition probabilities T (z′ | z), which

has π as a stationary distribution.

The widely used Metropolis-Hastings technique (Hastings 1970) solves this problem as

follows. Suppose the chain is in state z. Propose a new state z′ using a density q(z′ | z), and

replace z by z′ with probability

ρ(z 7→ z′) = min
(
1,

π(z′) q(z | z′)

π(z) q(z′ | z)
)

. (25)

Then, the overall transition probability T (z′ | z) = q(z′ | z)ρ(z 7→ z′). Eq.(25) is the largest

acceptance probability not exceeding unity in which the “detailed-balance” property holds:

T (z′ | z) π(z) = T (z | z′) π(z′) .

That is, ρ is a “valve” chosen so the amount of probability mass flowing from z′ to z is

in proportion π(z)/π(z′) to that flowing the other way. Together with the property of

recurrence, the detailed-balance condition is sufficient to ensure convergence of the sampled

sum in (8) to the expectation integral.

Recurrence is a weak property: it means that every state z′ can be reached from any

state z eventually, with nonzero probability. When Gaussian proposals q(z′ | z) are used,

recurrence follows immediately. For us, z is multivariate, and separate Gaussian proposals

can be used along various subvectors of z to provide recurrence. The combined chain that

cyclically updates each subvector of z in accordance with detailed balance also preserves

detailed balance.

We take a simple MCMC approach for the smoothing problem considered in this paper.

Suppose the proposal strategy sweeps over xt from t = 1 to T , each time proposing a new

value x′
t in a Gaussian pattern centered about xt. According to the discretized dynamics

of section 5, the stochastic forcing of xt has a covariance of κ2τ I, which gives an estimate of

the scale for proposals. In the above language, we have chosen q(z′ | z) = φ(xt − x′
t, sκ

2τ I),
where φ(x, Σ) = exp(−xT Σ−1x/2)/(det Σ)1/2(2π)d/2, the multivariate Gaussian density in

d dimensions. The scale constant s is chosen to give a good compromise between high

acceptance probability and significant jumps. We chose s = 1 throughout, which gave

a typical acceptance probability near 1/2. This proposal is symmetric, that is, q(z′ | z) =

q(z | z′), so this factor drops out below. In view of (25), the acceptance probability ρ becomes

the smaller of 1 and

ρ̃(z 7→ z′) =
π(z′) q(z | z′)

π(z) q(z′ | z)
=

p(x′
t |xt−1) p(xt+1 |x′

t)

p(xt |xt−1) p(xt+1 |xt)
× p(yt |x′

t)

p(yt |xt)
. (26)

The first factor in ρ̃ favors a better fit of x′
t to its two neighbors, and the second factor

rewards a better fit to the observed data. (If there was no observation at t, the second factor

is omitted.)
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Specifically, for the double-well problem, we propose to change xt to x′
t and use (26) with

p(x′
t |xt−1) = φ

(
x′

t − (xt−1 + τg(xt−1)), τκ2
)
, etc., and p(yt |x′

t) = φ(yt − x′
t, σ

2). A similar

expression holds true for the L63 problem. After repeating this propose/accept process for

each entry xt within z, the sweep is complete and a new draw from π has been obtained.

The collection of articles introduced by Gilks et al. (1996) is a good general reference on the

practical aspects of MCMC.
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Figure 1. Algorithm performance for the double-well case. (a) Sample trajectory used as the

truth (solid line) with sparse and noisy observations (open circles). (b) Mean trajectories from

MCMC (2000 samples after 105 iterations, dots and filled circles), resampled particle filter (RPF

with 104 particles, dashed line), and particle smoother (RPF followed by BSS with 104 particles,

solid line). (c) Standard deviations of the corresponding algorithms.
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Figure 2. Normalized histograms of the state values at the (a) descending and (b) ascending

zero-crossings in Fig. 1b. The line styles are the same as in Figs. 1b and c.
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Figure 3. Algorithm performance for a smaller numbers of particles. (a, b) Similar to Figs. 1b

and c, respectively, except that the particle number N is only 100. (c, d) Similar to (a) and (b),

respectively, except that the system noise κ is artificially inflated by 40%. The line styles are the

same as in Figs. 1b and c.
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Figure 4. Effect of noise-amplification factor on algorithm performance. (a) Mean estimation

errors in the double-well problem of Fig. 1. The RPF+BSS smoother is used with the indicated

level of increase in the system noise variance value κ; note that no increase in κ (0%) leads to

a high level of estimation error. (b) Ensemble variability similar to Fig. 1c but corresponding to

the four smoothers in panel (a) above; note that the smoother with a 50% increase in κ shows

the best match between the formal and empirical errors.
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Figure 5. Algorithm performance for the Lorenz model (L63). The x1 variable of a trajectory

(dotted line, each panel) and its noisy observations (open circles). Estimates (solid lines) of the

trajectory by the Resampled Particle Filter (RPF), Ensemble Kalman Filter (EnKF), Resampled

Particle Smoother, and the Smoother applied to the EnKF result are shown in order from top to

bottom panel.
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Figure 6. The same as Fig. 5 except that the x2 variable is shown; note that the x2 variable is

not directly observed (see text). The arrows indicate the epochs of the order statistics shown in

Fig. 9.
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Figure 7. The same as Fig. 5 except that the x3 variable is shown.
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Figure 8. The ensemble standard deviations for the MCMC, RPF (filtered), and RPF-BSS

(smoothed) methods, applied to the L63 problem (top panel). The corresponding posterior

distribution, estimated as a normalized histogram, of the x2 variables at selected epochs (arrows

in Fig. 6). The line styles are the same as in Figs. 1b and c.
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Figure 9. Order statistic histograms for the value of the x2 variable in the L63 case at selected

epochs (arrows in Fig. 6) in the Resampled Particle Filter and Smoother ensembles. The ensemble

size was 200, and 1000 simulations were used to compile the histogram. Note that unbiased

ensembles would tend to yield a uniform distribution for the order statistic (i.e., a flat histogram).

The ensemble under/over-estimates the true value as the histogram is biased toward the right/left

(higher/lower bin number). As expected, the smoother gives a more uniform distribution than

the filter.
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Figure 10. Root-mean-square (RMS) estimation errors for the L63 problem, as a function of

the ensemble size. Each of the four estimation schemes indicated is executed repeatedly for 50

times, with different observation noise realizations, to obtain the mean error displayed. When

the ensemble size is extremely small, the parametric approach (EnKF) performs better than the

non-parametric approaches (Particle Filter and Smoother). The accuracy of the parametric EnKF

approach does not improve significantly when the ensemble size is increased over 30, indicating

that its assumption of Gaussian distribution is not adequate.
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